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Abstract. Consider the problem of maximizing aquadratic form over the standard simplex. Problems
of thistype occur, e.g., inthe search for the maximum (weighted) cliquein an undirected graph. Inthis
paper, copositivity-based escape procedures from inefficient local solutions are rephrased into lower-
dimensiona subproblems which are again of the same type. As a result, an agorithm is obtained
which tries to exploit favourable data constellations in a systematic way, and to avoid the worst-case
behaviour of such NP-hard problems whenever possible. First results on finding large cliques in
DIMACS benchmark graphs are encouraging.
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1. Introduction

In this paper, we condider the following optimization problem:
' Az — max! subjecttoz € A", (1.1

where A isan arbitrary symmetric n. x n. matrix; a’ denotes transposition; and A™
isthe standard (n — 1)-dimensional simplex in n-dimensional Euclidean space R",
i.e. the intersection of an affine hyperplane with the positive orthant R}

A" ={z eR} : ez =1},

(of course, the region {y € ]Ri’i‘l . e'y < 1} can always be represented by
A™ introducing a slack variable). Here and in the sequel, the letter e is reserved
for a vector of appropriate length, consisting of unit entries exclusively. While
I = diag(e) denotes a generic identity matrix, we use the letters o and O (not 0)
to designate zero vectors and zero matrices of suitable size, to improve readability.
We also abbreviate V = {1,...,n} and denote by #A the size, i.e. the number of
elements of afinite set A.

Note that the maximizersof (1.1) remainthe sameif A isreplaced with A+ yee’
where v is an arbitrary constant. So without loss of generality assume henceforth
that all entriesof A are non-negative.

Of course, quadratic optimization problems like (1.1) — even the detection of
their local solutions—are NP-hard [11], [12]. Nevertheless, there are several exact



326 IMMANUEL M. BOMZE

procedureswhich try to exploit favourable data constellations in a systematic way,
to avoid the worst-case behaviour whenever possible. As a prototypical example
for thistype of algorithms, consider the iterative procedure proposed in [2], which
consists of two parts. At first, alocal solution of (1.1) is generated by following
the paths of feasible points provided by a dynamical system borrowed from evo-
lutionary modelling; in the second step, the procedure escapes from an inefficient
local maximizer in away such that improvement in the objective is guaranteed. In
this paper we concentrate on how to improve efficiency of the second part.

The paper is organized asfollows. The proposed procedure for the general case
is presented in Sections 2 and 3. Section 4 specifies an anti-greedy algorithm to
obtain good pivoting blocks and givesthe complete algorithm. Section 5 addresses
an important application, namely the determination of a maximum clique in an
undirected graph, and gives preliminary experimental results on some DIMACS
benchmark graphs. See [5] for a forthcoming detailed empirical study of this
approach.

2. Escaping from an Inefficient L ocal Solution

For ease of reference, we first repeat here the following characterization of global
optimality from [2, Theorem 6]:

THEOREM 1. Suppose that z € A™ isa local solution to (1.1), and denote by
S ={i €V :uz > 0} the set of its positive co-ordinates. Then z is a global
solution of (1.1) if and only if for all i € S, the n x n-matrix

Qi = e;(Az) + (Az)e] — z;A (2.1)
is copositive with respect to the polyhedral cone

T, = {veR" v =0, 20ifr¢SandZ—i gZ—éforalljeS},

(2.2

which means that

v'Qiv >0 foral vely;. (2.3
If thereisadirection v € T'; such that v'Q;v < 0, then v; < 0 and
T

z——veEA"
(%

z
isa strictly improving feasible point.
The next step is to decompose the copositivity condition with respect to the cones

I'; into several subproblems of dimension n — m < n by means of block pivoting
as introduced for detection of copositivity in [1]. Thisyields a series of auxiliary
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problemsof considerably smaller dimension. While there are quite many of thesein
general, the particularly simple structure of the conesT’; here guaranteesthat there
are at most m such subproblems, due to the fact that the feasible set is a simplex
here. Apart from generating smaller subproblems, the focus here is the deliberate
detection of an improving feasible direction using the information obtained so far,
rather than to restart blindly from scratch. For determining amaximum clique, this
approach is followed in [2] where a block pivoting escape procedure based on the
parallel generation of large cliques and independent sets is proposed. So we start
from this as a vantage point and rephrase the resulting copositivity conditions as
a series of smaller problems of the same type. Whenever one of these yields a
(local) solution exceeding the current best value of the master problem (1.1), then
an improving feasible point can be generated immediately.

To reach this goal, we havefirst to choose an m-element subset ' C V digjoint
from S such that the corresponding symmetric m x m-submatrix A of A is
copositiveon e, the hyperplanein R™ where the sum of all co-ordinates vanishes.
This property is equivalent to positive semidefiniteness of PA, P, where P =
I-— %ee’ is the orthoprojector onto e*. See Section 4 for a simple anti-greedy
approach to find such aset T'. Partition also

A; B
Oi= |:Bz{ Ci }
accordingto 7" and V \ T. Since S and T" are digoint and i € S, relation (2.1)
yields A; = —z; Ar. Next define the symmetric matrices of order n — m

Q) = Ci—erj —rje' — (ajjm)ee’, JET, (2.4)

where 7"9 isthe j-th row of B;, aswell asthe following polyhedral conesin R"~"™:

" =z e RN\ : ¢z <0, ngOifée,éS,%g%ifjeS}, (2.5)
( J

and m subcones of this, abbreviating by vs; = as; — a;;:
FZ(.? ={z € FZ(-T) ez > iz — (wiyg)ezfordl s€ T}, jeT. (26)
We need the following key decomposition and comparison resullt:
LEMMA 2. If (I — -ee') A7 (I — ;-ee') is positive semidefinite, then
Jri =",
jES
To be more precise, for any z € Flm choose j € T such that
riz + %(ajjxi)e'z <riz+ %(assxi)e'z foral s eT. (2.7

(T)
iJ

z'Qg-)z < z'Qg)z forall s e T. (2.8)

Thenz € I}’ and, furthermore,



328 IMMANUEL M. BOMZE

Proof. Putv = e; —e; € et. Thenfor al s € T we have

(rs — 1) 2 + (zi755)€'z = —zi(€'2)[3ass — Vsj — 3a55]
= —xi(e'z)[%ass —agj + %ajj]
/
= —xi%v'ATv
! 1 1
= —xi%v'(f — Eee')AT(I - Eee')v >0

by virtue of '~ < 0, which shows = € T'\"”). Finally, by (2.4) and (2.7) we get

z'Qg)z — z'QE?;)z = —2(e'z)[7";-z + %(ajjxi)e'z —rlz— %(assxi)e'z] <0,
which proves the assertion. O

THEOREM 3. Suppose that z € A™ isa local solution to (1.1), and denote by
S ={i € V:xz; > 0} the set of its positive co-ordinates, and by k = #S. Pick a
diointsubset T C V\S of size#T' = m < n—ksuchthat (I—Ltee') Ar(I—2Lee')
is positive semidefinite. Then x is a global solution of (1.1) if and only if for all
1 € S, the following copositivity conditions are satisfied:
QE? is FE? -copositivefor all j € T'.

Moreover, in the negative case we obtain the following improving feasible direction
(cf. Theorem 1): If z € I‘g) satisfies z’QEE)z < Ofor somej € T,thenv € R
with co-ordinates

—e'z, ifs=j,
vy =< 0, ifseT\{j}
Zs, ifseV\T,

satisfiesv € T'; and v'Q;v < O.

Proof. Reconsider the proof of Theorem 12 in [2], which applies to the case of
finding a maximum clique where A = Ag + %I (with Ag the adjacency matrix
of the underlying graph, see Section 5 below) and the current best feasible point
(correspondingto the current maximal clique S with k& elements) isz withz; = 1/k
if € S while z; = 0 otherwise. It is easy to see that the matrix D; defining I';
remainsalmost the same, the only difference concerning the block R whichreadsin
general evensimpler: R = [I | — 2-2], wherex isalso partitioned asz’ = [0’ | (%))
accordingtoT and V\T D S.Henceadso E;, E; and F; remain* asthey arein[2]
while F; = [—e| 0| R']. Hence the definitions used in [1, Theorem €] yield now,

* Asasubscript, | alwaysrefersto anindex set asin[1], [2].
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similar to case (+) in [2], but with an additional straightforward rearrangement
argument,

QF = C; — (E;*F;)'B; — BIE;'Fr + (E;'Fr) A,E7 1 Fy

l

/

T
] o
as specified in (2.4), where P; is a square permutation matrix which interchanges
the first with the j-th row if premultiplied. Note that we use S and T" here instead
of o and 7 in[2], and drop superscriptsfor A;, B;, and C;. Similarly, the condition
Hrz > owith H, = [o| — ¢/ | R] isequivalent to z € T'\") as defined in (2.5).
Next we deal with the additional requirement that G;z > o with

Gr = (E})7YB; — A;E;Fy)

+1 o' +1 o e
-5 eI S ]
_ +7] o ta;je

Bi,\j—er; Y1 ae ’

where B; \ ; consists of therows r}, s € T'\ {j} while a = [ys;]ser\ {5} Cf. (2.5)
and (2.6). Then obviously Gz > oif and only if £[r}z + (z;a;;)e'z] > 0and

T;Z 2r’.z+($1757j)€lz 2 O fOi‘a“ S GT\{j}

Therefore we arrive at the definition of the cones F( ) as given in (2.6) above,
sinceonecan merge both cases (+) and (-) into one coposr tivity conditionasin[2],

namely that Q ) be F( ) -copositive. Similarly, case (0) can be dealt with exactly
asin[2]. However to my regret | have to admit that this case can be incorporated
already into the others, making the requirement for m = 0 in [2, Theorem 12]
— while correct — superfluous. Indeed, the subcone corresponding to this case is

againcontainedin{zel“(): :O}WhereaSZCz—Zszlfez—O
whence Lemma 2 entails that we have in effect only m copositivity conditions (for
fixed i and T') instead of m + 1 as stated in [2]. This also applies to the general
case treated here. Now [1, Theorem 6] yields the result together with Theorem 1
above. Indeed, negative semidefiniteness of A; = —z; Ar is required there only
to guarantee that the parametrized subproblem (5) in [1] is concave, so that a
solution is attained at a vertex of the feasible set. Now for E = [e| — e| I |O]
and F = [e| —e|O|R'], the feasible set {z € R*™ : Ez > —Fuw} C e,
so that concavity of 2/ A;z = (—x;)2' A7z is guaranteed also if Ap is merely et-
copositive, Which evidently is equivaent to positive semidefiniteness of PA1 P,
where P =1 — ee is the orthoprojector onto e O

Note that Theorem 3 yields in total km subproblems of determining whether
or not a given symmetric matrix of order n — m is copositive with respect to a
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polyhedral cone specified by n linear inequalities. While this characterization of
global optimality may in itself be much more simpler to check than the previous
one (Theorem 1) due to the fact that the effort of checking copositivity increases
exponentialy with the number of variables involved, we shall proceed to fur-
ther simplification by showi ng that these copositivity conditions are equivalent to

copositivity of al Q ) on the whole of I‘( ) rather than on the subcones 1“( )
Now the former cone mcorporates only n — m restrictions which can epr|C|tIy
reformulated into positivity requirements on the co-ordinates, so that the condi-
tionsin Theorem 3 can be rephrased into those with respect to the positive orthant
R’}~™. Since copositivity is a homogeneous property, it suffices to check whether
it holdson A"~ instead on the whole of R, . Thiswill then yield the auxiliary
problems of the same type, but with smaller dimension, as claimed above.

THEOREM 4. If z € F( ) SatISerSzQ )2 < Ofor some s € T,andifj € Tis
chosen asin (2.7), then z yieldsan |mprovmg feasible direction v as specified in
Theorem 3.

Proof. From Lemma?2 we deducez € F( ) and z’Q z2<z Q )2 < Oyields
the result. O

The next section is devoted to rephrasing the problem of finding a point z
satisfying the above assumptions into a problem of the same type as (1.1). Then
we search for a (local) solution and repeat this, cycling over all s € T, and all
1 € S. The price we haveto pay for applying just local optimization proceduresto
these considerably simpler problemsis that in case of failure (i.e. if no improving
feasible point is returned), we still have no certificate of global optimality of the
current best feasible point z. In order to achievethis, either one would have to use
one of the several procedures for detecting copositivity which return a direction
violating this condition in case it is not true [3], [14], [15], [16], or to iterate the
above procedure recursively, asindicated in Section 4 below.

3. From Block Pivoting to Auxiliary Problems Yielding Global
I mprovement

L et us start with auseful observation oninversesof rank-two updatesof theidentity
matrix:

LEMMA 5. Let f, g, h be vectorsin R" ™ satisfying f'f = f'¢g = f'h = 1and
g'h = «a # 0. Then

(I—fg' =hfYF=T=ff ——hg
Proof. Straightforward by calculation, seealso, e.g. [9, Corallary 5, p.39] with
C=LX=[f|h;D=[p;andY =[g|f] 0
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Now we specialize the above result to transform Flm into R}~ to this end,
put f = ¢;, the truncated i-th standard basis vector (we retain f to avoid too
many indices); g = e, the vector of unit entries; and » = >-Z. Then & = z;, and
U=1-f¢ —hf'yidddsu = Uz > oif and only if z € Flm according to
Definition (2.5). Furthermore, we have

1
Z’Qgﬁ)z = xiu’Ri,sU where Ri,s — _(Ufl)/Q

€Ty

(1) U*l

0,8
with U r=7T—ff —ze.
We now haveto calculate R; ;. To thisend, we first do the leftmost product:

(Uﬁl)'Qg) = (U Y[C; —ery —rse’ — (ziags)ee]. (3.1
First observethat straightforward cal culation with partitioned matricesyields more
information about the blocks A;, B; and C; of );. Indeed, denoting the parts of A
by

AT |4 Az Bi
V' Ac BZ,' C;

then, as already used above, A; = —z;Ar and obviously #/Azx = (z) Acz.
Furthermore, B, = Vzf' — x;V and thus B;Z = VZ(x;) — z;VZ = o while
re = (V)5 f' — zv; where vs = [asj]j¢r. Thisentails

A= { } so that [ ] — Qi = ei(An) + (An)(ei) — miA,

r'z = (€)'Biz =0 while rlf=(VZ)s —=zias; foradlseT. (3.2
Finally, we obtain the explicit form of C;:

C; = f(AC{/L"\)I + (Acf)fl —z;Ac. (33)
Now using Lemma5wederive (U~ Y)e = [I— ff'—e(z)])e = (1-1)e—f = —f
and similarly

(Uﬁl)lrs = [I- [ = e(f)l]rs =Ts — (T;f)f —Oe

= (V/w\)sf — TijUs — [(Vf)s - :Eiasi]f = xi[asif - Us] .
Hence we obtain from (3.1), collecting terms,

U Q™) = UV Ci + fr) — zil(as — ass)f — vile’.

i,8

Proceeding similarly with the right factor, we now use .U~ = z;[as; f' — %] and
U1 = — f' to obtain

xiRi,s = (Uﬁl)ICiUil + fif[as’if, - ’qu] + mi[(asi - ass)f - Us]fl
= (U Y CU ™+ 2[(2a5 — ass) f ' — vsf' — f0))]. (34)
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LEMMA 6. For R;, = 2(U 1)Q{")U  we have

Ris = (¢'Ax)ee’ — (I — ff)Ac(I - ff')
+[2as; — CLSS]ff, — v f' — fU; (3.5
withvs = [asj]j¢r and f = é;.

Proof. It remains to determine (U~1)'C;U~1. From (3.3) we get C;f =
(AcZ)if +(AcZ) —z;Acf aswel asCiz = () AcZf + (AcZ)x; —xi(Ack) =
(z' Az) f. Hence

cU™t =0, —Ciff — Cize
= C; = [(Ac@)il — 2 Aclf ' = (Ac)f' — (2" Ax) fe!,  (3.6)
and therefore, rearranging terms
UYCU™ = (U YC— (U Y fl(Ack)if + (2’ Az)e]
+HU N Aclzif ' — @) 11
Now (U~Y) f = —xie,andalso (U 1) Ac = [I — ff'|Ac — e(Acz)" according
to Lemma5, while transposing (3.6) gives
(U Y'Ci = Ci — ff(Ac)il — ziAc] — f(AcE) — (' Az)ef'.
Plugging these three terms into (3.7) we finally obtain, using again (3.3),
U YCU ™ = Ci— ff'(Ac)il — mAc] — f(Ack) — (¢ Az)ef’
+ziel(AcE)if' + (' Az)e']
+I = ffAclzif f' =2 f']
—e(Ack) [z f f — 2f']
= f(AcZ) + (Ac?)f' — ziAc
—(Acz)if f' +xif fAc — [(Ac) — (' Az)ef’
+z;(AcZ)ief + z;(z' Ax)ee’
+aill — ff1Acff — (Ac2) f' + (Ac)if [
—z;(Ack)ief + (2’ Az)ef’
= zi[(z'Az)ee’ — (I — ff)Ac(I - f )]
which together with (3.4) yields the result. O

Note that whenever u = Uz satisfiesu; = —e'z = 0, we get from (3.5)
Z/Qg)z = z;u' R su = z;[7' Az — v/ Acul],

so that in this case the improvement result of Theorem 3 is nothing €else than the
requirement that there is an improving feasible point z with z; = Ofor all j € T,
cf. [2, Theorem 7].

For the sake of transparency, we recapitul ate our findingsin the following
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THEOREM 7. Suppose that z € A™ isa local solution to (1.1), and denote by
S ={i € V:z; > 0} the set of its positive co-ordinates with #S = k. Pick a
disjoint subset 7 C V'\ S of sizem < n — k suchthat (I — 2ee')Ar(I — Zee')
is positive semidefinite. Then x is a global solution of (1.1) if and only if for all
1 € S, thefollowing km QPsin R*~™ have objective values which do not exceed
the current best value 2/ Az:

W' AT 4 — max!  subjecttou € A" ™, (3.7

14<—S

wherei € S; s € T; and Al@s isthe symmetric matrix of order » —m obtained by
deleting all rows and columns belonging to indicesin T' and replacing the i-th row
and column by the s-th row and column. If U'Az@su > z' Az for somew € A"

and j € T is chosen such that

Z ajpty + %ajjui > Z Agplp + %aqqui foralqeT, (3.8)
pgTU{i} pg¢TU{i}

then a strictly improving feasible point 7 is obtained as follows:

Uj, Ifq:?!
@q:{o, ifg e TU i\ {7},
ug, ifqgeV\T.

Proof. First note that straightforward calculation shows «'R; su = z' Az —
W' AT yon A= andthat R’} ™™ -copositivity of R; ; isequivalent to the property

148
that v’ R; su takesonly nonnegativevalueson A™~™. Inlight of the preceding argu-
ments, we have only to derive the improving feasible direction v from Theorems 1
and3.Nowforu € A" ™ wegetz = U u = u—(f'u)f—('u)z = u—u;f -7,
so that

_ —Ti, Ifq:Z’
Zq = ug —zq, ifgeV\ (TU{i}),

while Theorem 3 entails, by virtue of —¢'z = u;,

Uy, If q= jl
v 0, ifgeT\{j},
a ug— x4, ifgeV\ (TU{i}),
-2, if g =1.
Hence z; /v; = —1 and therefore, from Theorem 1, £ = x + v with coordinates

specified as above, provided that z = Uu € FZ(.T.). But this relation follows from

Lemma 2 together with r;, = (V). f" — ;v where vg = [agplper, entailing

/ 1,.. r, ~ o 1. ,
Tq% + 5%ilqqt 2 = (V:v)qzz TiVgZ + 5TiQqqC 2

= —zi[(VZ)g+ (V2)q + %aqq“i]
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= —z,[(V2)g + [V(u—uif — 2))g + 3agqui]
= —z;[(Vu)y —ujaq + %aqqui]

= —wi[ Y. agup+ 3a6ui].
peT\{i}

Hence (3.9) guarantees z € Fg), and Theorem 4 together with z'Qg)z =
ziu'R; su < O proves strict improvement: (z)' Az > z'Ax. O

4. Local MinimizersYield Good Pivots, The Algorithm

Now given S C V we haveto find asubsetT C V\ S suchthat PAr P ispositive
semidefinite where P = T — ee is the orthoprojector onto e!-. To this end we
follow a counter-greedy approach in that we try to obtain a local minimizer of
x' Az, which means to consider the auxiliary QP

y'Ay — max! subjecttoz € A", (4.1)

where A = ysee! — [aij]z',jev\s with vg = max{as; : 5,5 € V \ S} to ensure
that A has non-negative entries. Then apply, e.g., the algorithm described in [5],
in order to obtain a local solution to (4.1). The following result guarantees that
this counter-greedy approach yields asubmatrix A7 having the propertiesrequired
in Theorem 7 to obtain global improvement (or to prove global optimality of the
current solution).

THEOREM 8. If y isalocal solutionof (4.1) andT = {j € V\ S : y; > O}, then
P At P ispositive semidefinite.

Proof. We use the characterization of local optimality in QPs due to Contesse
[7] and Borwein [6] in the formulation of [8, Theorem 1], whence it follows that
— AisT*-copositivewith T* = {v € I" : v/(Ay) = 0}, where

F={vecet:v;=0ifj€V\(SUT)}.

Now from local optimality of y weinfer that necessarily v/ (Ay) = Oforal v € T,
see, e.g. [4, Theorem 2]. HenceI™ =T Partitioningw.r.t. T and V \ (SUT), we

see that every v € T' can be written asv = [f] with o = Pa for somea € R”,

and vice versa. Hence we obtain o’ PArPa = —v' Av > 0, whence the assertion
follows. a

Thealgorithm is now straightforward. For beauty of exposition, we formulateitin
arecursive way, although for practical implementation one would have to restrict
the depth of recurrence to prevent combinatorial explosion in hard instances. If
local solutions are generated by following paths under the replicator dynamics as
in[2], finitenessfollowsfrom the resultsin [5] under simple regularity conditions.
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1. Starting from a suitable point 2:(0) € A™, find alocal solution z of (1.1), put
S={i:x;>0}andy = z'Az;

2. similarly, find alocal solution y of (4.1), put T = {i : y; > 0} and m = #T,
then P Ar P is positive semidefinite (Theorem 8);

3. foralli € Sandall s € T, findalocal solutionu; ; of (4.8), until u} AL u; ¢ >
~. Then form an improving feasible point z for (1.1) asin Theorem 7; replace
x(0) with z and go to step 1;

4. if n > 1 and al auxiliary problems (4.8) yield objective values not exceeding

~, then replacen with . — m; A with A", and go to step 1; again, cycle over

(At

ali e Sands e T until -y isexceeded;
5. else Theorem 7 guarantees that the current local solution z isthe global one.

5. Application: Search for aMaximum Clique

Consider an undirected graph G = (V,€) with # = n nodes. A clique S is a
subset of the node set V which corresponds to a complete subgraph of G (i.e.,
any pair of nodes in S is an edgein &, the edge set). A clique S is said to be
maximal if thereis no larger clique containing S. A (maximal) cliqueis said to be
a maximum clique if it contains most elements among all cliques. The search for
such amaximum clique is an NP-hard problem, for aconcise survey see, e.g. [11].

Now suppose some algorithm returns amaximal clique .S which is not a maxi-
mum cligue, and denote by S* a maximum clique. Of course, there must be anode
i € S\ S*, sothat anaive strategy would be restarting the employed algorithm on
the graph with node ; removed, i.e. for G, = (V \ {i}, € \ {(4, ), (7,%) : 7 € V}),
and repeating this, cycling over al ¢ € S. While this procedure has its merits from
a practical viewpoint [2], dimensionality of the problem is reduced only by one.
The situation is different in the procedure proposed here, which similarly cycles
overal i € S, but considersauxiliary problems of even smaller dimension. Hence,
the hope to obtain larger cliques with this approach is justified, at least to alarger
extent than with the naive strategy.

As shown in [2], the maximum clique problem can be reformulated into (1.1)
with A = 1T + Ag where Ag = [a;j];,jev iSthe n x n adjacency matrix of G,
i.e a;; = 1g(4,7) foral (4, 7). Hence A from (4.1) coincides with 31+ Agp g0
where G|V \ S denotes the complementary graph G restricted to the node set
V\ S. Therefore solving (4.1) means searching for amaximal clique T of G|V \ S,
i.e. amaximal independent set 7 C V \ S of verticesin G. This case is treated
to the extent of Theorem 3 in [2, Theorem 12], which unfortunately contains a
misprint: there ;L should be replaced with - in the definition of Q") and T'").
However, also Theorem 7 can be simplified in this case. For convenience, we
formulate the result in terms of maximal cliques and maximal independent sets
(of course, determination of these can again be accomplished by means of the
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replicator dynamicsasin [2]), and note that a purely combinatorial proof of this—
at least the necessity part with (5.1) —is seemingly not quite immediate.

THEOREM 9. Suppose that S C V is a maximal clique of size k£ in a graph
G = (V,€) with adjacency matrix Ag = [ai; = 1g(i,4)]ijev. Pick a digoint
independentset T C V' \ S of sizem < n — k. Denote by gz@s the graph of order
n — m obtained from G with all nodesin 7' removed, and the roles of nodes and
s interchanged.

Then S isamaximumclique of G if and only if for all 7 € S, all s € T the graphs

gz@s have a maximum clique with not more than k elements. If U C V\ T isa

maximal clique of gl@s with size larger than k, and j € T' is chosen such that
dnn () = D ap> Y. agp=dpnle) foralgeT, (5.1)
peU\{i} peU\{i}

then either (U U {5}) \ {¢} or U isalarger clique than S, depending on whether
1 € U or not.

Proof. Theorem 9 of [2] entails that every local solution « of (4.1) here hasthe
formu = by forsomeU CV\ T, i.e.

1 .
Uy = { 57 if qec l:],
0, otherwise.

The remainder is an easy consequence of Theorem 7, since here a,, = 3 for all
qeT. O

To assess the effectiveness of the proposed procedure, extensive simulations are
necessary which still arework in progress. For amore detailed report on the project
werefer to [5], which also will contain the data presented here. In this preliminary
phase of the study 22 selected DIMACS benchmark graphs were investigated. Al
these instances already have been considered in [4]. The loca optimization part
used the discrete time version of the replicator equation with A = Ag + %I which
frequently is called the Comtet approach, for details see[2].

The results of the simulations are summarized in Table | containing, for each
problem instance, indicated in the column labeled “ Graph” by the file name with
suppressed suffix .c1q(.b); the order n (number of nodes), density (“Dens.”),
i.e. theratio of the number of edges by the maximum number (7); the actual size
of the maximum cligues (column labeled “Max Cli.”) with the exception of the last
instance where only a lower bound is known; the size of the clique obtained by
local search; first improvement; and final improvement, the latter two as aresult of
recursive application of the algorithm as described in Section 4.

To illustrate runtime behaviour, the last two columns contain the ratios of time
used to obtain thefirst improved result relative to that used to get thelocal solution,
and overall time consumed relative that used for the first improvement.
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Table 1. Results on DIMACS benchmark graphs. 46*: best known value

Max loca  improvements rel.time

Graph n Dens. Cli. result first final first final

mann_a9 45 0.927 16 12 - 16 - 782.6
keller4 171  0.649 11 7 8 9 0836 4395
san200.0.7.1 200 0.700 30 15 - 17 - 1312
san200.0.7.2 200 0.700 18 12 - 14 - 2179
san200.0.9_1 200 0.900 70 45 46 47  99.26 22.55
san200_.0.9_2 200 0.900 60 36 38 40 03.23 10.15
san200.0.9.3 200 0.900 44 32 34 35 2600 6171
san400.0.5.1 400 0.500 13 7 - 12 - 0378
san400.0.7.1 400 0.700 40 20 - 21 - 06.70
san400_.0.7_2 400 0.700 30 15 16 17 3184 169.4
san400_0.7_3 400 0.700 22 12 14 15 66.68 33.66
san400_.0.9_1 400 0.900 100 52 54 5 67.03 42.35
sanr200.0.7 200 0.697 18 14 17 18 3486 3402
sanr400.0.5 400 0.501 13 11 - 12 - 8075
brock200_1 200 0.745 21 17 18 20 0450 3,927
brock200_3 200 0.605 15 9 12 13  13.67 1,964
brock200_4 200 0.658 17 12 13 16 0366 23564
p_hat300-1 300 0.244 8 6 7 8 1167 142.9
p_hat300-2 300 0.489 25 22 23 25 0841 13.48
p_hat300-3 300 0.744 36 32 33 34 0172 03.88
p-hat500-1 500 0.253 9 8 - 9 - 03.54
p-hat1000-2 1000 0.490 46* 42 43 44  03.92 23.33

The code was written in the ¢ programming language and run on a PC (486/66
DX2) under UNIX-Solaris System V (ho attempt was made to optimize the code).
Dueto time constraints, recursion depth was bounded by two, so that in some cases
asingle improvement has been obtained.

As can be seen, the results obtained are fairly encouraging. The quality of the
cliques (final improvement/Max Cli.) range from 52% to 100%, with 13 cases out
of 22 exceeding 80% and a vast majority (18) exceeding 66 %. Compared to other
continuous approaches like Pelillo’s relaxation labeling network technique [13]
or the continuous-based heuristic by Gibbons et al. [10], the procedure proposed
here is beaten only 4 times (by at most 2 nodes) while dominating these in other
instances by up to 5 nodes, as a comparison with the figures in [4] shows. This
is particularly remarkable in view of the different hardware situation, which is
also the reason why absolute runtime data are not very informative and therefore
omitted here. A detailed simulation also over random graphs is currently carried
out [5] and will shed more light on the — as we expect — advantageous average
performance of the presented procedure.
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