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Abstract. Consider the problem of maximizing a quadratic form over the standard simplex. Problems
of this type occur, e.g., in the search for the maximum (weighted) clique in an undirected graph. In this
paper, copositivity-based escape procedures from inefficient local solutions are rephrased into lower-
dimensional subproblems which are again of the same type. As a result, an algorithm is obtained
which tries to exploit favourable data constellations in a systematic way, and to avoid the worst-case
behaviour of such NP-hard problems whenever possible. First results on finding large cliques in
DIMACS benchmark graphs are encouraging.
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1. Introduction

In this paper, we condider the following optimization problem:

x0Ax! max ! subject to x 2 �n ; (1.1)

where A is an arbitrary symmetric n� n matrix; a 0 denotes transposition; and �n

is the standard (n�1)-dimensional simplex in n-dimensional Euclidean space Rn ,
i.e. the intersection of an affine hyperplane with the positive orthant Rn+ :

�n = fx 2 R
n
+ : e0x = 1g ;

(of course, the region fy 2 R
n�1
+ : e0y � 1g can always be represented by

�n introducing a slack variable). Here and in the sequel, the letter e is reserved
for a vector of appropriate length, consisting of unit entries exclusively. While
I = diag(e) denotes a generic identity matrix, we use the letters o and O (not 0)
to designate zero vectors and zero matrices of suitable size, to improve readability.
We also abbreviate V = f1; . . . ; ng and denote by #A the size, i.e. the number of
elements of a finite set A.

Note that the maximizers of (1.1) remain the same ifA is replaced withA+ee0

where  is an arbitrary constant. So without loss of generality assume henceforth
that all entries of A are non-negative.

Of course, quadratic optimization problems like (1.1) – even the detection of
their local solutions – are NP-hard [11], [12]. Nevertheless, there are several exact
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326 IMMANUEL M. BOMZE

procedures which try to exploit favourable data constellations in a systematic way,
to avoid the worst-case behaviour whenever possible. As a prototypical example
for this type of algorithms, consider the iterative procedure proposed in [2], which
consists of two parts. At first, a local solution of (1.1) is generated by following
the paths of feasible points provided by a dynamical system borrowed from evo-
lutionary modelling; in the second step, the procedure escapes from an inefficient
local maximizer in a way such that improvement in the objective is guaranteed. In
this paper we concentrate on how to improve efficiency of the second part.

The paper is organized as follows. The proposed procedure for the general case
is presented in Sections 2 and 3. Section 4 specifies an anti-greedy algorithm to
obtain good pivoting blocks and gives the complete algorithm. Section 5 addresses
an important application, namely the determination of a maximum clique in an
undirected graph, and gives preliminary experimental results on some DIMACS
benchmark graphs. See [5] for a forthcoming detailed empirical study of this
approach.

2. Escaping from an Inefficient Local Solution

For ease of reference, we first repeat here the following characterization of global
optimality from [2, Theorem 6]:

THEOREM 1. Suppose that x 2 �n is a local solution to (1.1), and denote by
S = fi 2 V : xi > 0g the set of its positive co-ordinates. Then x is a global
solution of (1.1) if and only if for all i 2 S, the n� n-matrix

Qi = ei(Ax)
0 + (Ax)e0i � xiA (2.1)

is copositive with respect to the polyhedral cone

�i = fv 2 R
n : e0v = 0; vr � 0 if r =2 S and

vi

xi
�

vj

xj
for all j 2 Sg ;

(2.2)

which means that

v0Qiv � 0 for all v 2 �i : (2.3)

If there is a direction v 2 �i such that v0Qiv < 0, then vi < 0 and

~x = x�
xi

vi
v 2 �n

is a strictly improving feasible point.

The next step is to decompose the copositivity condition with respect to the cones
�i into several subproblems of dimension n�m < n by means of block pivoting
as introduced for detection of copositivity in [1]. This yields a series of auxiliary
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problems of considerably smaller dimension. While there are quite many of these in
general, the particularly simple structure of the cones �i here guarantees that there
are at most m such subproblems, due to the fact that the feasible set is a simplex
here. Apart from generating smaller subproblems, the focus here is the deliberate
detection of an improving feasible direction using the information obtained so far,
rather than to restart blindly from scratch. For determining a maximum clique, this
approach is followed in [2] where a block pivoting escape procedure based on the
parallel generation of large cliques and independent sets is proposed. So we start
from this as a vantage point and rephrase the resulting copositivity conditions as
a series of smaller problems of the same type. Whenever one of these yields a
(local) solution exceeding the current best value of the master problem (1.1), then
an improving feasible point can be generated immediately.

To reach this goal, we have first to choose an m-element subset T � V disjoint
from S such that the corresponding symmetric m � m-submatrix AT of A is
copositive on e?, the hyperplane in Rm where the sum of all co-ordinates vanishes.
This property is equivalent to positive semidefiniteness of PATP , where P =
I � 1

m
ee0 is the orthoprojector onto e?. See Section 4 for a simple anti-greedy

approach to find such a set T . Partition also

Qi =

�
Ai Bi

B0i Ci

�

according to T and V n T . Since S and T are disjoint and i 2 S, relation (2.1)
yields Ai = �xiAT . Next define the symmetric matrices of order n�m

Q
(T )
i;j = Ci � er0j � rje

0 � (ajjxi)ee
0 ; j 2 T ; (2.4)

where r0j is the j-th row of Bi, as well as the following polyhedral cones in Rn�m :

�
(T )
i = fz 2 R

VnT : e0z � 0; z` � 0 if ` =2 S;
zi

xi
�

zj

xj
if j 2 Sg ; (2.5)

and m subcones of this, abbreviating by sj = asj � ajj:

�
(T )
i;j = fz 2 �

(T )
i : r0sz � r0jz � (xisj)e

0z for all s 2 Tg ; j 2 T : (2.6)

We need the following key decomposition and comparison result:

LEMMA 2. If (I � 1
m
ee0)AT (I �

1
m
ee0) is positive semidefinite, then[

j2S

�
(T )
i;j = �

(T )
i :

To be more precise, for any z 2 �
(T )
i choose j 2 T such that

r0jz +
1
2(ajjxi)e

0z � r0sz +
1
2(assxi)e

0z for all s 2 T : (2.7)

Then z 2 �
(T )
i;j and, furthermore,

z0Q
(T )
i;j z � z0Q

(T )
i;s z for all s 2 T : (2.8)
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328 IMMANUEL M. BOMZE

Proof. Put v = es � ej 2 e?. Then for all s 2 T we have

(rs � rj)
0z + (xisj)e

0z = �xi(e
0z)[1

2ass � sj �
1
2ajj]

= �xi(e
0z)[1

2ass � asj +
1
2ajj]

= �xi
e0z

2
v0AT v

= �xi
e0z

2
v0(I �

1
m
ee0)AT (I �

1
m
ee0)v � 0

by virtue of e0z � 0, which shows z 2 �
(T )
i;j . Finally, by (2.4) and (2.7) we get

z0Q
(T )
i;j z � z0Q

(T )
i;s z = �2(e0z)[r0jz +

1
2(ajjxi)e

0z � r0sz �
1
2(assxi)e

0z] � 0 ;

which proves the assertion. E

THEOREM 3. Suppose that x 2 �n is a local solution to (1.1), and denote by
S = fi 2 V : xi > 0g the set of its positive co-ordinates, and by k = #S. Pick a
disjoint subsetT � VnS of size #T =m � n�k such that (I� 1

mee
0)AT (I�

1
mee

0)
is positive semidefinite. Then x is a global solution of (1.1) if and only if for all
i 2 S, the following copositivity conditions are satisfied:

Q
(T )
i;j is �

(T )
i;j -copositive for all j 2 T :

Moreover, in the negative case we obtain the following improving feasible direction
(cf. Theorem 1): If z 2 �

(T )
i;j satisfies z0Q(T )

i;j z < 0 for some j 2 T , then v 2 R
n

with co-ordinates

vs =

8<
:
�e0z; if s = j,
0; if s 2 T n fjg,
zs; if s 2 V n T ,

satisfies v 2 �i and v0Qiv < 0.

Proof. Reconsider the proof of Theorem 12 in [2], which applies to the case of
finding a maximum clique where A = AG +

1
2I (with AG the adjacency matrix

of the underlying graph, see Section 5 below) and the current best feasible point
(corresponding to the current maximal cliqueS with k elements) is xwith xi = 1=k
if i 2 S while xi = 0 otherwise. It is easy to see that the matrix Di defining �i
remains almost the same, the only difference concerning the blockRwhich reads in
general even simpler:R = [I j � 1

xi

bx], where x is also partitioned as x0 = [o0 j (bx)0]
according to T and V nT � S. Hence alsoEI ,EJ andFI remain� as they are in [2]
while F 0J = [�e j o jR0]. Hence the definitions used in [1, Theorem 6] yield now,

� As a subscript, I always refers to an index set as in [1], [2].
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similar to case (+) in [2], but with an additional straightforward rearrangement
argument,

QI = Ci � (E�1
I FI)

0Bi �B0iE
�1
I FI + (E�1

I FI)AiE
�1
I FI

= Ci � [e jO]PjBi �B0iPj

"
e0

O

#
� xi[e jO]PjATPj

"
e0

O

#
= Q

(T )
i;j

as specified in (2.4), where Pj is a square permutation matrix which interchanges
the first with the j-th row if premultiplied. Note that we use S and T here instead
of � and � in [2], and drop superscripts for Ai, Bi, and Ci. Similarly, the condition
HIz � o with H 0I = [o j � e0 jR0] is equivalent to z 2 �

(T )
i as defined in (2.5).

Next we deal with the additional requirement that GIz � o with

GI = (E0I)
�1[Bi �AiE

�1
I FI ]

=

�
�1 j o0

�e j I

�
PjBi + xi

�
�1 j o0

�e j I

�
PjATPj

�
e0

O

�

=

�
�r0j

Bi;nj � er0j

�
+ xi

�
�ajje

0

ae0

�
;

where Bi;nj consists of the rows r0s, s 2 T n fjg while a = [sj]s2Tnfjg, cf. (2.5)
and (2.6). Then obviously GIz � o if and only if �[r0jz + (xiajj)e

0z] � 0 and

r0sz � r0jz + (xis;j)e
0z � 0 for all s 2 T n fjg :

Therefore we arrive at the definition of the cones �(T )i;j as given in (2.6) above,
since one can merge both cases (+) and (–) into one copositivity condition as in [2],
namely that Q(T )

i;j be �(T )i;j -copositive. Similarly, case (0) can be dealt with exactly
as in [2]. However, to my regret I have to admit that this case can be incorporated
already into the others, making the requirement for m = 0 in [2, Theorem 12]
– while correct – superfluous. Indeed, the subcone corresponding to this case is
again contained in fz 2 �

(T )
i : e0z = 0g whereas z0Ciz = z0Q

(T )
i;j z if e0z = 0,

whence Lemma 2 entails that we have in effect onlym copositivity conditions (for
fixed i and T ) instead of m + 1 as stated in [2]. This also applies to the general
case treated here. Now [1, Theorem 6] yields the result together with Theorem 1
above. Indeed, negative semidefiniteness of Ai = �xiAT is required there only
to guarantee that the parametrized subproblem (5) in [1] is concave, so that a
solution is attained at a vertex of the feasible set. Now for E = [e j � e j I jO]0

and F = [e j � e jO jR0]0, the feasible set fz 2 R
n�m : Ez � �Fwg � e?,

so that concavity of z0Aiz = (�xi)z
0AT z is guaranteed also if AT is merely e?-

copositive, which evidently is equivalent to positive semidefiniteness of PATP ,
where P = I � 1

m
ee0 is the orthoprojector onto e?. E

Note that Theorem 3 yields in total km subproblems of determining whether
or not a given symmetric matrix of order n � m is copositive with respect to a
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polyhedral cone specified by n linear inequalities. While this characterization of
global optimality may in itself be much more simpler to check than the previous
one (Theorem 1) due to the fact that the effort of checking copositivity increases
exponentially with the number of variables involved, we shall proceed to fur-
ther simplification by showing that these copositivity conditions are equivalent to
copositivity of all Q(T )

i;j on the whole of �(T )i rather than on the subcones �(T )i;j .
Now the former cone incorporates only n �m restrictions which can explicitly
reformulated into positivity requirements on the co-ordinates, so that the condi-
tions in Theorem 3 can be rephrased into those with respect to the positive orthant
R
n�m
+ . Since copositivity is a homogeneous property, it suffices to check whether

it holds on �n�m instead on the whole of Rn�m+ . This will then yield the auxiliary
problems of the same type, but with smaller dimension, as claimed above.

THEOREM 4. If z 2 �
(T )
i satisfies z0Q(T )

i;s z < 0 for some s 2 T , and if j 2 T is
chosen as in (2.7), then z yields an improving feasible direction v as specified in
Theorem 3.

Proof. From Lemma 2 we deduce z 2 �
(T )
i;j and z0Q(T )

i;j z � z0Q
(T )
i;s z < 0 yields

the result. E

The next section is devoted to rephrasing the problem of finding a point z
satisfying the above assumptions into a problem of the same type as (1.1). Then
we search for a (local) solution and repeat this, cycling over all s 2 T , and all
i 2 S. The price we have to pay for applying just local optimization procedures to
these considerably simpler problems is that in case of failure (i.e. if no improving
feasible point is returned), we still have no certificate of global optimality of the
current best feasible point x. In order to achieve this, either one would have to use
one of the several procedures for detecting copositivity which return a direction
violating this condition in case it is not true [3], [14], [15], [16], or to iterate the
above procedure recursively, as indicated in Section 4 below.

3. From Block Pivoting to Auxiliary Problems Yielding Global
Improvement

Let us start with a useful observation on inverses of rank-two updates of the identity
matrix:

LEMMA 5. Let f , g, h be vectors in Rn�m satisfying f 0f = f 0g = f 0h = 1 and
g0h = � 6= 0. Then

(I � fg0 � hf 0)�1 = I � ff 0 �
1
�
hg0 :

Proof. Straightforward by calculation, see also, e.g. [9, Corollary 5, p.39] with
C = I; X = [f jh]; D =

�1 0
0 1

�
; and Y = [g j f ]0. E
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Now we specialize the above result to transform �
(T )
i into R

n�m
+ : to this end,

put f = bei, the truncated i-th standard basis vector (we retain f to avoid too
many indices); g = e, the vector of unit entries; and h = 1

xi

bx. Then 1
� = xi, and

U = I � fg0 � hf 0 yields u = Uz � o if and only if z 2 �
(T )
i according to

Definition (2.5). Furthermore, we have

z0Q
(T )
i;s z = xiu

0Ri;su where Ri;s =
1
xi
(U�1)0Q

(T )
i;s U

�1

with U�1 = I � ff 0 � bxe0 :
We now have to calculate Ri;s. To this end, we first do the leftmost product:

(U�1)0Q
(T )
i;s = (U�1)0[Ci � ers

0 � rse
0 � (xiass)ee

0] : (3.1)

First observe that straightforward calculation with partitioned matrices yields more
information about the blocks Ai, Bi and Ci of Qi. Indeed, denoting the parts of A
by

A =

�
AT V

V 0 AC

�
so that

�
Ai Bi

B0i Ci

�
= Qi = ei(Ax)

0 + (Ax)(ei)
0 � xiA ;

then, as already used above, Ai = �xiAT and obviously x0Ax = (bx)0AC bx.
Furthermore, Bi = V bxf 0 � xiV and thus Bibx = V bx(xi) � xiV bx = o while
r0s = (V bx)sf 0 � xiv

0
s where vs = [asj]j =2T . This entails

r0sbx = ( bes)0Bibx = 0 while r0sf = (V bx)s � xiasi for all s 2 T : (3.2)

Finally, we obtain the explicit form of Ci:

Ci = f(AC bx)0 + (AC bx)f 0 � xiAC : (3.3)

Now using Lemma 5 we derive (U�1)0e = [I�ff 0�e(bx)0]e = (1�1)e�f = �f
and similarly

(U�1)0rs = [I � ff 0 � e(bx)0]rs = rs � (r0sf)f � 0e

= (V bx)sf � xivs � [(V bx)s � xiasi]f = xi[asif � vs] :

Hence we obtain from (3.1), collecting terms,

(U�1)0Q
(T )
i;s = (U�1)0Ci + fr0s � xi[(asi � ass)f � vs]e

0 :

Proceeding similarly with the right factor, we now use r0sU
�1 = xi[asif

0� v0s] and
e0U�1 = �f 0 to obtain

xiRi;s = (U�1)0CiU
�1 + xif [asif

0 � v0s] + xi[(asi � ass)f � vs]f
0

= (U�1)0CiU
�1 + xi[(2asi � ass)ff

0 � vsf
0 � fv0s] : (3.4)
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LEMMA 6. For Ri;s =
1
xi
(U�1)0Q

(T )
i;s U

�1 we have

Ri;s = (x0Ax)ee0 � (I � ff 0)AC(I � ff 0)

+[2asi � ass]ff
0 � vsf

0 � fv0s (3.5)

with vs = [asj]j =2T and f = bei.
Proof. It remains to determine (U�1)0CiU

�1. From (3.3) we get Cif =
(AC bx)if+(AC bx)�xiACf as well asCibx = (bx)0AC bxf+(AC bx)xi�xi(AC bx) =
(x0Ax)f . Hence

CiU
�1 = Ci � Ciff

0 �Cibxe0
= Ci � [(AC bx)iI � xiAC ]ff

0 � (AC bx)f 0 � (x0Ax)fe0 ; (3.6)

and therefore, rearranging terms

(U�1)0CiU
�1 = (U�1)0Ci � (U�1)0f [(AC bx)if 0 + (x0Ax)e0]

+(U�1)0AC [xiff
0 � (bx)f 0] :

Now (U�1)0f = �xie, and also (U�1)0AC = [I � ff 0]AC � e(AC bx)0 according
to Lemma 5, while transposing (3.6) gives

(U�1)0Ci = Ci � ff 0[(AC bx)iI � xiAC ]� f(AC bx)0 � (x0Ax)ef 0 :

Plugging these three terms into (3.7) we finally obtain, using again (3.3),

(U�1)0CiU
�1 = Ci � ff 0[(AC bx)iI � xiAC ]� f(AC bx)0 � (x0Ax)ef 0

+xie[(AC bx)if 0 + (x0Ax)e0]

+[I � ff 0]AC [xiff
0 � bxf 0]

�e(AC bx)0[xiff 0 � bxf 0]
= f(AC bx)0 + (AC bx)f 0 � xiAC

�(AC bx)iff 0 + xiff
0AC � f(AC bx)0 � (x0Ax)ef 0

+xi(AC bx)ief 0 + xi(x
0Ax)ee0

+xi[I � ff 0]ACff
0 � (AC bx)f 0 + (AC bx)iff 0

�xi(AC bx)ief 0 + (x0Ax)ef 0

= xi[(x
0Ax)ee0 � (I � ff 0)AC(I � ff 0)]

which together with (3.4) yields the result. E

Note that whenever u = Uz satisfies ui = �e0z = 0, we get from (3.5)

z0Q
(T )
i;s z = xi u

0Ri;su = xi[x
0Ax� u0ACu] ;

so that in this case the improvement result of Theorem 3 is nothing else than the
requirement that there is an improving feasible point ~x with ~xj = 0 for all j 2 T ,
cf. [2, Theorem 7].
For the sake of transparency, we recapitulate our findings in the following
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THEOREM 7. Suppose that x 2 �n is a local solution to (1.1), and denote by
S = fi 2 V : xi > 0g the set of its positive co-ordinates with #S = k. Pick a
disjoint subset T � V n S of size m � n� k such that (I � 1

m
ee0)AT (I �

1
m
ee0)

is positive semidefinite. Then x is a global solution of (1.1) if and only if for all
i 2 S, the following km QPs in Rn�m have objective values which do not exceed
the current best value x0Ax:

u0A
(T )
i su! max ! subject to u 2 �n�m ; (3.7)

where i 2 S; s 2 T ; and A(T )
i s is the symmetric matrix of order n�m obtained by

deleting all rows and columns belonging to indices in T and replacing the i-th row
and column by the s-th row and column. If u0A(T )

i su > x0Ax for some u 2 �n�m

and j 2 T is chosen such thatX
p=2T[fig

ajpup +
1
2ajjui �

X
p=2T[fig

aqpup +
1
2aqqui for all q 2 T ; (3.8)

then a strictly improving feasible point ~x is obtained as follows:

~xq =

8<
:
ui; if q = j,
0; if q 2 T [ fig n fjg,
uq; if q 2 V n T .

Proof. First note that straightforward calculation shows u0Ri;su = x0Ax �

u0A
(T )
i su on�n�m, and thatRn�m+ -copositivity ofRi;s is equivalent to the property

thatu0Ri;su takes only nonnegative values on�n�m. In light of the preceding argu-
ments, we have only to derive the improving feasible direction v from Theorems 1
and 3. Now foru 2 �n�m, we get z = U�1u = u�(f 0u)f�(e0u)bx = u�uif�bx,
so that

zq =

�
�xi; if q = i,
uq � xq; if q 2 V n (T [ fig),

while Theorem 3 entails, by virtue of�e0z = ui,

vq =

8>><
>>:
ui; if q = j,
0; if q 2 T n fjg,
uq � xq; if q 2 V n (T [ fig),
�xi; if q = i.

Hence xi=vi = �1 and therefore, from Theorem 1, ~x = x + v with coordinates

specified as above, provided that z = Uu 2 �
(T )
i;j . But this relation follows from

Lemma 2 together with r0q = (V bx)qf 0 � xiv
0
q where vq = [aqp]p=2T , entailing

r0qz +
1
2xiaqqe

0z = (V bx)qzi � xiv
0
qz +

1
2xiaqqe

0z

= �xi[(V bx)q + (V z)q +
1
2aqqui]
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= �xi[(V bx)q + [V (u� uif � bx)]q + 1
2aqqui]

= �xi[(V u)q � uiaqi +
1
2aqqui]

= �xi[
X

p2Tnfig

aqpup +
1
2aqqui] :

Hence (3.9) guarantees z 2 �
(T )
i;j , and Theorem 4 together with z0Q

(T )
i;s z =

xiu
0Ri;su < 0 proves strict improvement: (~x)0A~x > x0Ax. E

4. Local Minimizers Yield Good Pivots; The Algorithm

Now given S � V we have to find a subset T � V n S such that PATP is positive
semidefinite where P = I � 1

mee
0 is the orthoprojector onto e?. To this end we

follow a counter-greedy approach in that we try to obtain a local minimizer of
x0Ax, which means to consider the auxiliary QP

y0 bAy ! max ! subject to x 2 �n�k ; (4.1)

where bA = See
0 � [aij]i;j2VnS with S = maxfasj : s; j 2 V n Sg to ensure

that bA has non-negative entries. Then apply, e.g., the algorithm described in [5],
in order to obtain a local solution to (4.1). The following result guarantees that
this counter-greedy approach yields a submatrix AT having the properties required
in Theorem 7 to obtain global improvement (or to prove global optimality of the
current solution).

THEOREM 8. If y is a local solution of (4.1) and T = fj 2 V n S : yj > 0g, then
PATP is positive semidefinite.

Proof. We use the characterization of local optimality in QPs due to Contesse
[7] and Borwein [6] in the formulation of [8, Theorem 1], whence it follows that
� bA is ��-copositive with �� = fv 2 � : v0( bAy) = 0g, where

� = fv 2 e? : vj = 0 if j 2 V n (S [ T )g :

Now from local optimality of y we infer that necessarily v0( bAy) = 0 for all v 2 �,
see, e.g. [4, Theorem 2]. Hence �� = �. Partitioning w.r.t. T and V n (S [ T ), we

see that every v 2 � can be written as v =
�bv
o

�
with bv = Pa for some a 2 R

m ,
and vice versa. Hence we obtain a0PATPa = �v0 bAv � 0, whence the assertion
follows. E

The algorithm is now straightforward. For beauty of exposition, we formulate it in
a recursive way, although for practical implementation one would have to restrict
the depth of recurrence to prevent combinatorial explosion in hard instances. If
local solutions are generated by following paths under the replicator dynamics as
in [2], finiteness follows from the results in [5] under simple regularity conditions.
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1. Starting from a suitable point x(0) 2 �n, find a local solution x of (1.1), put
S = fi : xi > 0g and  = x0Ax;

2. similarly, find a local solution y of (4.1), put T = fi : yi > 0g and m = #T ;
then PATP is positive semidefinite (Theorem 8);

3. for all i 2 S and all s 2 T , find a local solutionui;sof (4.8), untilu0i;sA
(T )
i sui;s >

. Then form an improving feasible point ~x for (1.1) as in Theorem 7; replace
x(0) with ~x and go to step 1;

4. if n > 1 and all auxiliary problems (4.8) yield objective values not exceeding
, then replace n with n�m; A with A(T )

i s, and go to step 1; again, cycle over
all i 2 S and s 2 T until  is exceeded;

5. else Theorem 7 guarantees that the current local solution x is the global one.

5. Application: Search for a Maximum Clique

Consider an undirected graph G = (V; E) with #V = n nodes. A clique S is a
subset of the node set V which corresponds to a complete subgraph of G (i.e.,
any pair of nodes in S is an edge in E , the edge set). A clique S is said to be
maximal if there is no larger clique containing S. A (maximal) clique is said to be
a maximum clique if it contains most elements among all cliques. The search for
such a maximum clique is an NP-hard problem, for a concise survey see, e.g. [11].

Now suppose some algorithm returns a maximal clique S which is not a maxi-
mum clique, and denote by S� a maximum clique. Of course, there must be a node
i 2 S n S�, so that a naive strategy would be restarting the employed algorithm on
the graph with node i removed, i.e. for Gi = (V n fig; E n f(i; j); (j; i) : j 2 Vg),
and repeating this, cycling over all i 2 S. While this procedure has its merits from
a practical viewpoint [2], dimensionality of the problem is reduced only by one.
The situation is different in the procedure proposed here, which similarly cycles
over all i 2 S, but considers auxiliary problems of even smaller dimension. Hence,
the hope to obtain larger cliques with this approach is justified, at least to a larger
extent than with the naive strategy.

As shown in [2], the maximum clique problem can be reformulated into (1.1)
with A = 1

2I + AG where AG = [aij]i;j2V is the n � n adjacency matrix of G,
i.e. aij = 1E(i; j) for all (i; j). Hence bA from (4.1) coincides with 1

2I + A
GjVnS ,

where GjV n S denotes the complementary graph G restricted to the node set
V nS. Therefore solving (4.1) means searching for a maximal clique T of GjV nS,
i.e. a maximal independent set T � V n S of vertices in G. This case is treated
to the extent of Theorem 3 in [2, Theorem 12], which unfortunately contains a
misprint: there 1

2m should be replaced with 1
2k in the definition of Q(�)

i;j and �
(�)
i;j .

However, also Theorem 7 can be simplified in this case. For convenience, we
formulate the result in terms of maximal cliques and maximal independent sets
(of course, determination of these can again be accomplished by means of the
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replicator dynamics as in [2]), and note that a purely combinatorial proof of this –
at least the necessity part with (5.1) – is seemingly not quite immediate.

THEOREM 9. Suppose that S � V is a maximal clique of size k in a graph
G = (V; E) with adjacency matrix AG = [aij = 1E(i; j)]i;j2V . Pick a disjoint

independent set T � V n S of size m � n� k. Denote by G(T )i s the graph of order
n�m obtained from G with all nodes in T removed, and the roles of nodes i and
s interchanged.
Then S is a maximum clique of G if and only if for all i 2 S, all s 2 T the graphs
G
(T )
i s have a maximum clique with not more than k elements. If U � V n T is a

maximal clique of G(T )i s with size larger than k, and j 2 T is chosen such that

dUnfig(j) =
X

p2Unfig

ajp �
X

p2Unfig

aqp = dUnfig(q) for all q 2 T ; (5.1)

then either (U [ fjg) n fig or U is a larger clique than S, depending on whether
i 2 U or not.

Proof. Theorem 9 of [2] entails that every local solution u of (4.1) here has the
form u = bU for some U � V n T , i.e.

uq =

�
1

#U ; if q 2 U ,
0; otherwise.

The remainder is an easy consequence of Theorem 7, since here aqq = 1
2 for all

q 2 T . E

To assess the effectiveness of the proposed procedure, extensive simulations are
necessary which still are work in progress. For a more detailed report on the project
we refer to [5], which also will contain the data presented here. In this preliminary
phase of the study 22 selected DIMACS benchmark graphs were investigated. All
these instances already have been considered in [4]. The local optimization part
used the discrete time version of the replicator equation with A = AG +

1
2I which

frequently is called the Comtet approach, for details see [2].
The results of the simulations are summarized in Table I containing, for each

problem instance, indicated in the column labeled “Graph” by the file name with
suppressed suffix .clq(.b); the order n (number of nodes), density (“Dens.”),
i.e. the ratio of the number of edges by the maximum number

�n
2

�
; the actual size

of the maximum cliques (column labeled “Max Cli.”) with the exception of the last
instance where only a lower bound is known; the size of the clique obtained by
local search; first improvement; and final improvement, the latter two as a result of
recursive application of the algorithm as described in Section 4.

To illustrate runtime behaviour, the last two columns contain the ratios of time
used to obtain the first improved result relative to that used to get the local solution,
and overall time consumed relative that used for the first improvement.
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Table 1. Results on DIMACS benchmark graphs. 46�: best known value

Max local improvements rel.time
Graph n Dens. Cli. result first final first final

mann a9 45 0.927 16 12 – 16 – 782.6
keller4 171 0.649 11 7 8 9 08.36 439.5
san200 0.7 1 200 0.700 30 15 – 17 – 131.2
san200 0.7 2 200 0.700 18 12 – 14 – 21.79
san200 0.9 1 200 0.900 70 45 46 47 99.26 22.55
san200 0.9 2 200 0.900 60 36 38 40 03.23 10.15
san200 0.9 3 200 0.900 44 32 34 35 260.0 61.71
san400 0.5 1 400 0.500 13 7 – 12 – 03.78
san400 0.7 1 400 0.700 40 20 – 21 – 06.70
san400 0.7 2 400 0.700 30 15 16 17 31.84 169.4
san400 0.7 3 400 0.700 22 12 14 15 66.68 33.66
san400 0.9 1 400 0.900 100 52 54 56 67.03 42.35
sanr200 0.7 200 0.697 18 14 17 18 34.86 340.2
sanr400 0.5 400 0.501 13 11 – 12 – 807.5
brock200 1 200 0.745 21 17 18 20 04.50 3,927
brock200 3 200 0.605 15 9 12 13 13.67 1,964
brock200 4 200 0.658 17 12 13 16 03.66 23,564
p hat300-1 300 0.244 8 6 7 8 11.67 142.9
p hat300-2 300 0.489 25 22 23 25 08.41 13.48
p hat300-3 300 0.744 36 32 33 34 01.72 03.88
p hat500-1 500 0.253 9 8 – 9 – 03.54
p hat1000-2 1000 0.490 46� 42 43 44 03.92 23.33

The code was written in the C programming language and run on a PC (486/66
DX2) under UNIX-Solaris System V (no attempt was made to optimize the code).
Due to time constraints, recursion depth was bounded by two, so that in some cases
a single improvement has been obtained.

As can be seen, the results obtained are fairly encouraging. The quality of the
cliques (final improvement/Max Cli.) range from 52% to 100%, with 13 cases out
of 22 exceeding 80% and a vast majority (18) exceeding 66 %. Compared to other
continuous approaches like Pelillo’s relaxation labeling network technique [13]
or the continuous-based heuristic by Gibbons et al. [10], the procedure proposed
here is beaten only 4 times (by at most 2 nodes) while dominating these in other
instances by up to 5 nodes, as a comparison with the figures in [4] shows. This
is particularly remarkable in view of the different hardware situation, which is
also the reason why absolute runtime data are not very informative and therefore
omitted here. A detailed simulation also over random graphs is currently carried
out [5] and will shed more light on the – as we expect – advantageous average
performance of the presented procedure.
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